Partial Solution Set, Leon §7.4

7.4.1 Determine $\|\cdot\|_F$, $\|\cdot\|_{\infty}$, and $\|\cdot\|_1$ for each of the following matrices.

(a)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
. The norms are $||A||_F = \sqrt{2}$, $||A||_{\infty} = ||A||_1 = 1$.

$$(d) = \begin{bmatrix} 0 & 5 & 1 \\ 2 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}.$$

The norms are $||A||_F = 7$, $||A||_{\infty} = 6$, and $||A||_1 = 10$.

7.3.3 Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Show that $||A||_2 = 1$.

Proof: If
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x^2 \end{bmatrix} \in \mathbf{R}^2$$
, then $A\mathbf{x} = \begin{bmatrix} x_1 \\ 0 \end{bmatrix}$, so

$$||A||_2 = \max_{\mathbf{x} \neq \mathbf{0}} \frac{||A\mathbf{x}||_2}{||\mathbf{x}||_2} = \max_{\mathbf{x} \neq \mathbf{0}} \frac{|x_1|}{\sqrt{x_1^2 + x_2^2}} \le 1,$$

with equality when $x_2 = 0$.

- 7.4.5 Let $\|\cdot\|_M$ denote a matrix norm on $R^{n\times n}$, and let $\|\cdot\|_v$ denote a vector norm on R^n . Let I denote the $n\times n$ identity matrix. Show the following:
 - (a) If $\|\cdot\|_M$ and $\|\cdot\|_v$ are compatible, then $\|I\|_M \ge 1$.
 - (b) If $\|\cdot\|_M$ is subordinate to $\|\cdot\|_v$, then $\|I\|_M = 1$.

Solution:

(a) Suppose $\|\cdot\|$ and $\|\cdot\|$ are compatible. Then for any $A \in \mathbb{R}^{n \times n}$ and $\mathbf{x} \in \mathbb{R}$,

$$||A\mathbf{x}|| \le ||A||_M ||\mathbf{x}||_v.$$

It follows that, for any nonzero $\mathbf{x} \in \mathbb{R}^n$,

$$\|\mathbf{x}\|_v = \|I\mathbf{x}\|_v \le \|I\|_M \|\mathbf{x}\|_v,$$

SO

$$||I||_M \ge \frac{||\mathbf{x}||_v}{||\mathbf{x}||_v} = 1.$$

(b) Suppose $\|\cdot\|_M$ is subordinate to $\|\cdot\|_v$. Then for any $A \in \mathbb{R}^{n \times n}$,

$$||A||_M = \max_{\mathbf{x} \neq \mathbf{0}} \frac{||A\mathbf{x}||_v}{||\mathbf{x}||}.$$

In particular,

$$||I||_M = \max_{\mathbf{x} \neq \mathbf{0}} \frac{||I\mathbf{x}||}{||\mathbf{x}||} = \max_{\mathbf{x} \neq \mathbf{0}} \frac{||\mathbf{x}||_v}{||\mathbf{x}||_v} = 1.$$

7.4.11 Let $\|\cdot\|$ denote the family of vector norms and let $\|\cdot\|_M$ be a subordinate matrix norm. Show that

$$||A||_M = \max_{\|\mathbf{x}\|=1} ||A\mathbf{x}||.$$

Solution: Let A be an $m \times n$ matrix, and $\mathbf{0} \neq \mathbf{x} \in \mathbf{R}^n$.

Then

$$\frac{\|A\mathbf{x}\|}{\|\mathbf{x}\|} = \frac{\|\mathbf{x}\|}{\|\mathbf{x}\|} \frac{\|A\mathbf{x}\|}{\|\mathbf{x}\|} = \frac{\frac{1}{\|\mathbf{x}\|} \|A\mathbf{x}\|}{\frac{1}{\|\mathbf{x}\|} \|\mathbf{x}\|} = \|A\mathbf{u}\|,$$

where $\mathbf{u} = \frac{\mathbf{x}}{\|\mathbf{x}\|}$.

7.4.12 Let A be an $n \times n$ matrix, and let $\|\cdot\|_M$ be a matrix norm that is compatible with some vector norm on \mathbf{R}^n . If λ is an eigenvalue of A, show that $|\lambda| \leq \|A\|_M$.

Proof: Suppose A is $n \times n$, λ is an eigenvalue of A with associated eigenvector \mathbf{x} , and that $||A||_M$ is compatible with some vector norm $||\cdot||_V$. Then

$$|\lambda| \|\mathbf{x}\|_V = \|\lambda \mathbf{x}\|_V = \|A\mathbf{x}\|_V \le \|A\|_M \|\mathbf{x}\|_V.$$

Since $\|\mathbf{x}\|_{V} \neq 0$, it follows that $|\lambda| \leq \|A\|_{M}$.